Clustered Regression Analysis

نویسندگان

  • David Lindgren
  • Lennart Ljung
چکیده

Cluster structure in (multicollinear) data can be utilized by pattern recognition methods in order to find adequate subspaces for nonlinear regression. When regressing a particular severely nonlinear function, it is demonstrated that this approach is superior to polynomial PLS. It is also demonstrated that for nonlinear functions, the choice of regressing explained variables onto the explaining variables, or vice-versa, is not arbitrary. Numerical experiments indicate that the classical statistical model is more powerful than the inverse regression approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random-effects regression models for clustered data with an example from smoking prevention research.

A random-effects regression model is proposed for analysis of clustered data. Unlike ordinary regression analysis of clustered data, random-effects regression models do not assume that each observation is independent but do assume that data within clusters are dependent to some degree. The degree of this dependency is estimated along with estimates of the usual model parameters, thus adjusting ...

متن کامل

Modeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)

Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...

متن کامل

Prediction models for clustered data: comparison of a random intercept and standard regression model

BACKGROUND When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter esti...

متن کامل

Proportional hazards regression for the analysis of clustered survival data from case-cohort studies.

Case-cohort sampling is a commonly used and efficient method for studying large cohorts. Most existing methods of analysis for case-cohort data have concerned the analysis of univariate failure time data. However, clustered failure time data are commonly encountered in public health studies. For example, patients treated at the same center are unlikely to be independent. In this article, we con...

متن کامل

Design-adaptive Minimax Local Linear Regression for Longitudinal/clustered Data

This paper studies a weighted local linear regression smoother for longitudinal/clustered data, which takes a form similar to the classical weighted least squares estimate. As a hybrid of the methods of Chen and Jin (2005) and Wang (2003), the proposed local linear smoother maintains the advantages of both methods in computational and theoretical simplicity, variance minimization and bias reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002